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The solvability of the equilibrium equations of isotropic, homogeneous,shallow 
shells of constant thickness (the V. Z. Vlasov modification) has been examined 

in [l]. The results of [l] are extended herein to the case of orthotropic inho- 
mogeneous, shallow shells of variable thickness with considerably more general 
boundary conditions. A generalization of the Korn inequality is obtained as an 

intermediate resuit. The possibility of applying projection methods is noted. De- 
termination of the generalized solution of the problem, and obtaining the funda- 

mental a priori estimate of the solutions differ somewhat from those in [I]. 

1. Fundrmenrrl ralrtionrhtpr. Let the shell middle surface s* be given 
by the equation r = r (a, fj), which maps s* homeomorphically into some domain 

Q of the plane of the variables a, /$. The following modification of the relations of 
nonlinear theory is considered for an elastic orthotropic inhomogeneous shallow shell of 
variable thickness 

Cl = A-lu, + A:,v(AR)-1 + WA; -+ 1!2w:11-2 

Q = B-lua I_ H,u (A@-' +- ZL@ + 1,',w:,2B-2 

t = - (AB)-'waii + B,~o;gl-'B-~ + Agw,k-2B-' 
T, = En&l + EIA, T, = E,s, + Eaez, s = GIE, 
.I!, = D,xl+ D12xi, M2 = Dz13tl -+ D2xz, ,\I = D,T 

Eii = 2t'tEi (1 - prps)-l (i = 1. 2), El, = p&11, E,l = plEz2, G, = 2kG 
3L)i = 2h”Ei(l - ~l~~jsl (i = 1, 21, D,, = /_LTD,, Di, L‘= p1D2, 3Dk= !tGP 

The following notation is used in (1.1): U, u, w are displacements of a point of the 
shell middle surface, AZ, B2, 2C= 0 are coefficients of the first quadratic form of 
the surface, R,, R2, RI2 are the radii of curvature of the middle surface, pi, es, es 
are the tensile and shear strains, X1, 3Cs, ‘C are the changes in curvature of the shell 

middle surface, T,, TP, S are tangential stress resultants, &I,, Mz, M are the bend- 
ing and twisting moments. E,, Ez, G, IQ, p2 are the elastic characteristics of the 
material ; the subscript u (fi) denotes differentiation with respect to a (or p ). 

The equilibrium differential equations of an isotropic, homogeneous, shallow constant- 
thickness shell in displacements are found in [l] , hence, the differential equations cor- 
responding to these conditions are not presented here. 

The following geometric conditions 



WI -0, g =o, YI - 
Ya 

JJ 1% = 0, 0 IY, = 0 (1.2) 

are given on the sections ri (i = 1, 2, 3, 4) of the boundary r of the domain $2 , 
where the intersection yt n ys contains some arc yr”. 

The transverse force N, (s), the moment M* =(M,*, M2*) , and the elastic sup- 

port reaction act on the part J’s = r \ Yr fl Y z of the contour so that the total trans- 

verse force Qn (s) is determined on r \ yt, and the bending moment M, (S) on 

r \ Y2 

Qn @I= Ns + $ [M,* cos (/3, n) -/- iVs* cos (a, n)] - a&G - urs $- (1.3) 

M, (s) = Ml” cos (a, n) + M,” COS (p, n) - az,w - a22 g- 

The tangential stress resultant T I* is given on the part r \ y3 of the contour, and the 
tangential stress resultant Ts* on the part I‘ \ y4 of the boundary 

T,* (s) = N, (s) - b,,u - b12v, T,* (s) = N2 (s) - b,,u - b,zv (1.4) 

where N,, N2 are external tangential stress resultants, I\ bijl) is a matrix characteri- 

zing the elastic support reaction. 

2. Functional 8pace1. The following Conditions are henceforth considered 
satisfied : 

1) The domain 52 is a bounded domain, the finite sum of star domains Qk. 

2) The boundary r of the domain Q consists of a finite number of closed con- 
tours of the Liapunov class JI, (m, 0) (* ) . 

3) The coefficients A, B of the first quadratic form of the surface s* , and their 

derivatives A,, AD, B,, BP belong to the space Lm (Q), and 
. 

A>m,, B>?n,>O (2.11 

almost everywhere in Q ; mris some constant. 

4) The curvatures of the middle surface RI-l, R2-l, R,zl belong to the space 

L2 (Q) . 
5) h, Et, EL, G, pl, p2 belong to the space Lm (Q), and the inequalities 

O<Q<‘~,E~,E~, C<cc, O<Pcll, I% < m3 < 1 (2.2) 

are satisfied almost everywhere in Q ; m2, LT3 are certain constants. 

6) The matrix I( bij (s) )I . 1s uniformly positive definite in r, and the functions 

Q (s), bii (a) are piecewise continuous. 

1. The Space HI (52). The scalar product 

(w(l). uA’))ff,(~) = \ [(D gp + D&)) xi”’ + (D2&) + D+p) I$) + 

b 
_t 2D,zW@)] ABdadP (2.3) 

is introduced in the set C, of functions w E c@) (St) and satisfy the first two bound- 
ary Conditions in (1.2). The closure of the set cr in the appropriate norm (2.3) is 

l ) Editor’s note. The symbol JI (Cyrillic L) stands for Liapunov. 



654 1 .l.V:~ri\vich and I,.P.I,ebr.iii- 

called the space H, (a). 

2. The Space Hs (a, y). Let 6’s be the set of pairs of functions W* (u, U) ,? 

Ccl) (Q) which satisfy the two last boundary Conditions in (1.2). The scalar product 

(O”(l) -o*(2))&@, y) = 
c 

ICE llE;;’ + E12~$,‘) E$’ -}- 
h 

+ (E,& + E22~$,‘) E$,’ f G,e$.&‘] ABdadP -+- 

-f- ’ [ bl,d’) + blgAl)) u(2) + (b,,d’) + QA’)) ?I@‘] d6 
\ ( , (2.4) 
‘i 

(9 
F10 = A-u:) + A&i) (AZ?)-I, &j = &Q,r;L) + &u(i) (A&’ 

&=+(~)fi+~(~)z, i=1,2 

some part of the contour r. The closure of the 

called the space Hs (52, y). 

The Space H,(Q). 

Th%.space Ha (St) is the Hilbert 

space of vector functions 0 (u, u, ZU) 

is introduced in the set ca, where y is 

set cs in the appropriate norm (2.4) is 

.g 
“6 

such that IN* (u, U) E Hz (a, y); 

W E Hi (St) with the naturally 

introduced scalar product. Hs (9) = 

Hs (a, y) x H, (St). 
a 4. The Space H, (Q, y). 

X 
> The space H, (L?, y) is a particular 

Fig. 1 
case of the space HZ (!2, y): 
b,, = ozz = 1, b,2 = L& = 0. 

5. The S pace H, (9, y). The closure of the set of vector functionso*(rc,v)E 

C(l) (52) in the norm 
., 

II co* IIH,(O, u) = 
SL 

12 - I- v‘?. 3 -I- & (~a -im ux)‘] dadP + 1 (u” -+ v”) ds (2.5) 
hi Y 

is the space H, (52, y). Further, we will examine the properties of the spaces intro- 

duced. The domains Q,, 62s are adjacent parts of the strip between the lines y = a 

and y = h, as is indicated in Fig. 1. The domain Ql is described by the relation 

x (Y) G x s rP (Y)? and tis by the relation ‘p (y) < 5 & 4 (y). The functions 

x (Y)l V (Y), t# (Y) are piecewise continuous in [a, 61. Let C == inf [(F (Y) -X(!/)l~ 

cl = sup ~cp (y) - x (y)l, d =S~P l$ (yj -x (y)l,& = sup I$ (Y)--CP @)I in la, bl. 

Lemma 2.1. The inequalities 

c/I u l&~,~~n,, s 2d [ II u II&a,, + cd II us llbwa,,l (2.6) 

are valid for the functions II +z CVl” “) ((2, [ ] <Zd. 71 ,-r WY. “‘(Cl.,). It is sufficient to 

carry out the proof for the functions 11 E c(i) ($1, ,_J Q,), IE c:“” (I>,]. The corresponding 

verifications for the functions from the space U7(‘,“) (62) are obtained by passing to the ‘? 

limit. The representation 
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u (2, y) = IL (50, y) -t j U( (t, Y) dt 
.cg 

is valid for the function I( E Co) (Q, 'J S1,) . After squaring both sides of this expression 

and estimating the right side by using the Holder inequality, we obtain 
4J (:0 

u? (5, y) < 213 (LO, I/) + 2d 
J 

Ut2 dt 

x (?A 

Successive integration with respect to the variable z,, between x (~1) and (# (Y) , and then 
over the domain Q, U Q2, (in the variables 2, y) results in the inequality 

Hence (2.6) indeed follows. A new function 

1 1.(X, Y), 5 > ‘p (Y) 

r( (.L.* y, = 1 1’ ((p (4 1 Y), x Q cp (Yl 

is constructed to obtain the estimate (2.7). Taking into account that uX = 0 in the 

domain Q1 = {CC, y : CJ (9) - 1 < CC < cp (y)} and modifying the proof presented above 
insignificantly, we can obtain the inequality 

b JI (y) 

s s uwx dy < 24 

n P (!/, 

[{ y U2dX &/ + &II ux ll:.2(62.)] 

a v9(!/)-1 
The equalit) 

b p(y) 

s s 

> 

uVxdy = 
J 

U'dS 

a 0(11)-l x=3(y) 

follows from the definition of the function u , which completes the proof of Lemma 2.1. 

Note. If U (z, Y) = 0 on the contour 1: = q (Y), then the inequality 

11 u llL*(n*, G vr dr II UX IILZ W*) (2.9 

is valid. 
Lemma 2.2. Let Y be a part of the boundary r of the domain Q which con- 

tains a certain connecting arc of length 2Z> Cl , and furthermore, let there be the vec- 

tor function w* E H, (52, y). Then o* E w,(l) (a), and the relationship 

(2.9) 

holds with constants m, bf independent of the choice of the element O* 
In the main, the proof of Lemma 2.2 agrees with the proof of the Korn inequality p]. 

A slight addition permits proving Lemma 2.2 (and the Korn inequality itself) in the case 

of the boundary r E n, (m, 0). 
Further, the covering of S2 by domains Ati of a special kind will be constructed, and 

some inequalities will be established for the elements of the spaces w,(r) (Ak) X w,(l) 

(oh). 



Let Y = AB (Fig.2) be a connecting arc of length 21 > 0 of the contour I’ which 
also belongs to the boundary of the domain Q,(see Condition 1). Parallel lines 0C \] 
A F I\ BM are drawn through the points A, B and the middle C of the chord AB, 

where 0 is the center of a circle of the star Q,(of radius R,). 

Fig. 2 

Let 21 < R,. Otherwise, part of the arc y of such length can be taken. The line 

AK II B-G where L is the point ofintersection of the line UC and the circle rr 

bounding the starry part of the domain Q2,. The points iv, p are points of intersection 

of the line KM and the lines AF and BL , respectively. A computation shows that 
the angle @* = LLBM is such that sin /3* > 8-11R,2D-3, where D is the dia- 

meter of the domain S-2,. The quadrangle AKMB decreases so that the new quadran- 
gle AK,M,B, is similar to AKMB and the angle LBAK is fixed. Let Ba be 
the point of intersection between P,B, and the boundary y, which can lie either out- 
side or inside the quadrangle AK,M,B,; A, is defined as a domain bounded by the 

part AB2 = U, of the arc y and the broken line AN,PIB, Let 6, be the diameter 

of the domain Al. 
Le mm a 2, 3. The inequality 

\ (u” + v”) dctdp < 2”81D01-=K;h ,‘2 1 (u2 + v”) ds + 
c I 
Al 

+ 6, [ [au: + 24 -+ (up + v:i2] dadp} (2.10) 

3, 

is valid for the vector function o * E w,(l) (A,) , where 1, D, R,, a1 have been 
defined above. 

Two coordinate systems x,Oyr and x20yz such that the OX, axis is parallel to the 
line Alv, and the axis 0.~ is parallel to B1,, are introduced for the proof. It is seen 

that the domain A1 possesses properties of the domain 61 in Lemma 2.1 in both coordi- 
nate systems. 

Let ul, vl. ‘(z~ “2 be projections of the vector function o* (II, u) on the OxI, O,U,, Or,, 
0!12 axes, respectively. It can be shown that 

.> 
z-1 -Kc 

I/‘? , ,‘- ___ - ]“Bp’ 

Ii,? T l/J? ‘-2: I”,{,J (2.11) 



Existence of solutions of the nonlinear theory of shallow shells 657 

2”,2 + 2va2 + (“a + V,)2 = 2Utq + 2Vfr/1 + (‘ivi + ‘ixi)” (i = i Y 2, (2.12) 

Application of Lemma 2.1 and relations (2.11). (2.12) result in the following: 

r 
(G + 9) da dp < 2861D5t-2R1-4 

BI 

(J (‘a2 + G) ds + 61 [J u;,&dzldyl + 

A1 

+ [ u~,,~dyz 

11 
< 286~D61-2 Ri4 2 

A; 1s 
(u2 +:s)ds + 61 s [ 2~4~2 + 2v a” -+- (up + vcl )” 

1 1 
lad? 

01 AI 
which proves Lemma 2.3. 

Lemma 2.4. The domain Q can be covered by a finite system of domains 
Ai (i = 1, 29 ees( N(6)), each of whose diameters is less than an arbitrarily assigned 

number 6 > 0 with the following Properties: 
1) A1 is the domain constructed above ; 
2) Each of the domains Ai (i = 1, 2, . . ., N (6)) is a starry domain relative to 

each point of its certain interior circle Ki of the radius pi and 

i-l 

Kit U Aj 
j=l 

3) For all 6 > 0 the inequalities 

hold. 

diam A. IOD 
;<x, 

pi 
i = 2,3, . . . , N (6) (2.,13) 

Indeed, a circle in Q of diameter less than 8 with center at the middle of the seg- 

ment N,P, (Fig.2) can be considered the domain AZ. The same circle, but with center 

on the boundary of the domain A1 U AZ is As, etc. A finite number of such circles can 

cover any strictly interior sub-domain of 8. It is seen that this part of the covering 

satisfies the conditions of the lemma. There remains to construct a covering of the 

boundary strip 9, of width a of the domain 9. It is evidently sufficient to construct 

it for any of the domains Slk, for example P,. A circle Fz of radius 2-i R, is construc- 

ted in the domain Q, , to be concentric with the circle l”i bounding the starry part of 
the domain 52, (Fig. 3). Two tangents CL and CM to the circle F2, between which the 

angle is 2a0 , are drawn from an arbitrary point C of the boundary of Q1 . Evidently 
sin a, > 2-l RID-l. An angle FNK, whose sides FN and T(N are a distance E from 

the sides LC and MC , respectively, is constructed within the angle LCM. A circle F3 

M/ Fig. 3 

of radius E with center 0 is inscribed in 
the angle FNK . The domain bounded by 

the semicircle APAl, the tangents to the 
circle AB llA,B,II OC and the part BCB, 

of the boundary 9, is called A,. It is seen 
that for sufficiently small E a part of the 

strip .& included between the lines AD 
and AIBl and the corresponding neighbor- 
hood of the arc BCB1 does not intersect 

the circle Fa, i.e. the Property (2) is satis- 
fied. A direct computation shows that 
diam A,E-~ < 10 DRI-l. i.e. Property(3) 
is also satisfied. The construction described 



above is performed at each point of the boundary of D , and then by using the Bolzano 
lemma a finite covering is selected. This completes the proof. 

Lemma ‘2.5. Let A be a starry domain relative to the circle K of radius R , 

with a boundary of the class a, (m, 0) ( see Foomote p. 653), whose diameter is 6. Then 

for the vector-function o* (u, V) E W,@)(A) , the inequality 

is valid. 

f 362 [2u,2 
s + 2~8 + (UP; Ql da@\ (2.14) 
A 

For the proof, a circle O1 of radius 6, concentric with the circle K , (Fig. 4) is drawn. 

Fig. 4 

The sides A,B, and CID1 of some square 

AIBIC,D1 inscribed in the circle K, are con- 
tinued until they intersect the circle O1 at 
the points P,, N1. The domain bounded by 

the lines AIL, CIM, by the arc A1A&, and 
part of the boundary LM, is denoted by T,. 

The figure AIFINICl is rotated through a 
certain angle a* reiative to the point 0 

such that the point N, is displaced to the 
middle of the arc F,N,. The appropriate 

part of the domain A is denoted by Tz. 

Moreover, the figure A,F,N,C, is rotated 
through the angles 2a*, 3a*,..., na* rela- 
tive to the point 0 , and their corresponding 

parts of A are denoted by TS, Ta, . . . . T,-,+l, 

where n is selected as the least from the 

condition (n + 1) a* >2n. It can be con- 

sidered that sin a* = v$!R6-‘, and therefore a* > v/z R6-1, from which n < 
1/kdR-‘. A local x*Oyi coordinate system is introduced in each of the domains Ti . 

Let ui be the projection of the vector O* (u, V) on the Ozi axis which goes along 

ONi+l. By virtue of Lemma P. 1, the inequality 

{ !’ u,Zdsidy, + 2R (R + 6) s u&idridyi) (2.15) 
Ti TinK Ti 

holds. Evidently 

The inequality 

(2.16) 

(2.17) 
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holds in each of the domains Ti n Ti+i . Hence 

d’ (u’ -’ 112) (Jr. c@ < 5 1’ 
A i=~ ~~ n ~i+~ 

(IL‘? -7 ~2) du dp < 2 (sin r*)-2 i [ s rri2dxid yi + 

i=l Ti n Ti+l 

- .c fi;+, dsidyi < 4 (sin a*)-? 2 j ui’dsidyi 1 
llfl 

(2.18) 

Ti nTit1 i==l Ti 

The inequality 

1 
’ (f3 

A 

+ ~2) d&P < 4 (n + 1) (1 -+ 6R-I) (sin a*)-? ( [ (u” + c*) da d/3 + 

k 

+ R (R + 6) J [ha’) $m 2z.pB + (rr,? + ~$1 dr “pi 
.5 

follows from the inequalities (2.16), (2.18) from which the estimate (2.14) results. 

Lemma 2.6. Let y , a part of the boundary of the domain Q , contain a connec- 
ting arc of length 21 > 0. Furthermore, let the vector function be o* E H4 (fi, y). 
In this case o* E Hj (a, y), where the relationship 

(2.19) 

with constants m, M independent of the choice of a*, holds. 

The right side of the inequality (2.19) is proved by using Lemma 2.2. The proof of 

the left inequality is by contradiction. Let the inequality m 11 co* llH, to, .,) < I( co* IIH, (~a, +,) 
not be satisfied. In this case, there is a sequence 0,’ E ~(1) (~2) such that 

It can be considered that w,* converges weakly to oo* in H5 (a, r). It follows from the 

relation (2.20) that the sequences 

(2.21) 

converge strongly to zero in the space 17 (9) and 

lim \ (74,;’ + ~~2) ds = 0 
,‘-+a * 

‘i 

A new function 6 (v, I#) = (B-‘11, A-lv) is introduced. From the fact that (] 9,, ]]H, (Q,~)-+O 
as II - 50 there follows jj a,* lIfil ca, uj - o as n -+ 00 , and conversely. The inequality 

2y;1,, +~ “#;:p -t (Cp,,p + ‘#,,,)’ < ‘0 (&,, i_ e;,,, y- &) + 2ca (Cp,” -t ‘#,‘) (2.22) 

is valid for the function fj,, almost everywhere in Q , where the constants cl, “i depend 
only on the estimate of the coefficients of the first quadratic form A, B , and are finite 
by virtue of Condition (3). 

Having constructed the covering of domain Q (Lemma 2.4) and applied the Lemma 
2.3, we can obtain the inequality 
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If follows from the inequality (2.23) tnat 

s [z’& + 2~& i- (cP,p -I- $,,)‘I da@ d 4~1 
AI s 

(e&, + E& + E&J dadp + 
AI 

+ 2%61DV2R~-4 
s 

(cp,’ + $1~2) ds 

Y (2.24) 

where 61~ = 2-n1”R14D-%2-1. From here and from Lemma 2.2 it follows that On ----) 0 in 

w21 (Al) , and therefore 11 Wnjl LI (A,) - 0 as n -+ CU. The inequalities 

’ 
3 

r&f,, t W& i- (cpnp + %A21 da@ < 4 s @fen A- &, 4 &J da@ + 

‘i %  

+ 88~2 (1OD)4 HO-~ J’ (cp,” + $,,2) dadp (2.25) 
Ki 

are valid in the domains Ai for 6” 6 66-l (lOD)-4 Ko~c~-‘. 

Considering the inequality (2.25) successively in the domains AZ, As,..., AN(b) and 
taking account of the properties of the covering, it can be concluded that )I ff, 11~~ (Q,-@ 
as n -) 00, which indeed proves the lemma. 

Lemma 2.7. Let o* (u, 4 E H2 (Q, $7 where y is defined as in Lemma 2.6, 

In this case w* E w,(l) (a) and 
II co* IIIWL Y) ( jj,f 

O < m g II co* Ilw(‘)cn, ’ 
(2.26) 

2 

with constants m, hf independent of the choice of O*. 

Lemma 2. 8. Let the function be w E H, (fit), then w E WZ(‘) (52) and 

II QJ IlH,(B) ( M 
(I < “l s II w I&p (sd) ’ 

(2.27) 

2 

with constants m, ll/l independent of the choice of the element W. 

New functions u = A-lw,, v = B-lwp are introduced for the proof. Such a sub- 

stitution reduces Lemma 2.8 to Lemma 2.6. 

Lemmas 2.6 - 2. 8 mean that the appropriate imbeddinp theorems presented in [3], 
which will be used, are valid in the spaces HI (Q), H2 (Q, y) . 

3, Generalised solution and lolvabillty of the problem. Let the 
following conditions 

ZEH4(Q), XELP(Q), YELP(Q), M~*ELP(r) (3.1) 
M,* EL”(r), NI E L” V’), N, E Lp (I’), N, E L (r) (P > 1) 

be satisfied, where H_, (a) is a negative space with t’ne norm 

(12 I(H_1 (W = SUP ( 15 Zwda@ j II c \G w) 

In particular Lp (Q) c H_l (52)) p > 1’: 
At the points of r where the stress resultants Ni are moments fi’i* are not specified, 

these quantities are predefined zero. 
It is known that the shell equilibrium condition can be expressed by using the Lagrange 
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principle of virtual displacements, which is in this case 

(0 +X,(P) = - St T, (Rh + waxX2) + Tz (K’x + w,rx~@-~) - 

- s 12&x - (Al)-’ (waxp + qxa)] -I- [El, (R;'w + + A-aLUaz) + 
+ El2 (Rib + f B-w$)] [A-‘cpa + -44~ CAB)-‘I + pa (R?w + 

+ -$Pw~~) +E** (R;~W + +B-~+F)]IB-~~~+ B,~(AB)-11 + 

+ Gl(s -~)[~(~)S+$(~)a]}AB~adP + 
+ 1 [(Z - Xw,A-l- Yw,$-) x + XT + Y41 ABdadP + 

+ 5 [NIT +“Nn + N,x + A+fl*xa + B-‘MPxp - ( as + al,%) x - 

( 810 - as + aa8 x ) ax1 & 
anJ (3.2) 

The vector function a (cp, 9, x> is the virtual displacement here. 

Definition 3.1. The vector function o (u, u, w) E Ha (a). turning the 

integral equality (3.2) into an identity for any vector function a (cp, 9, x) E H3 (hz). 
is called a generalized solution of the shell equilibrium problem. 

Estimating each member in (3.2) by using the Holder inequality, it can be seen that 
under the conditions imposed on the shell parameters, the external forces and the vector 

functions o, a, the inequality (3.2) is meaningful, Considering the right side of (3.2) 
separately for fixed 0 (U, V, W) E H, (i-2) as a functional in the vector function 

a (cp, 4, x) = & 6% it is verified directly that it is linear and continuous in the 

space Ha (Q) , and therefore, we represent it as a scalar product in H, (52) by the Riesz 

theorem. This representation defines some nonlinear operator K6.r in the space H,(Q), 

and (3.2) irself becomes 
(0 - a)ar(aa) = (Ku. ah2) (3.3) 

Therefore, finding the generalized solution of the problem is equivalent to solving an 
operator equation in the space Hs (a) 

(9 = K6) (3.4) 

Lemma 3.1. The operator K is strongly continuous in the space Ha (sb). The 
assertion in the lemma is verified directly by using the Holder inequality and the Sobo- 
lev-Kondrashev theorem on the complete continuity of the imbedding operator in the 
spaces WD(‘) (52) [3]. 

The Schauder-Leray principle on the fixed point of an operator is used to prove the 
solvability of (3.4). Let S (1, 0) be a sphere of unit radius in the space HS (8) with 
center at zero: 110 llH, tnj = 1. The projections of the sphere S (1, 0) using the map- 

pint3 
w = RWl, a* = h*R%ol* 

where R > 0, h* > 0 are certain constants, defines an “ellipsoid” C (h*, R, 0) in the 
space H, (id). For fixed constants h+ > 1, R > 1 the ellipsoid is the boundary of some 
connected convex domain containing the unit sphere with center at zero of the space 
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HS (Q). 
By the Schauder-Ieray principle, for the solvability of (3.4) it is sufficient to prove 

that the completely continuous vector field is homotopic in some ellipsoid C (h*, fi, 0) 

to a completely continuous vector field lo, where I is the identity operator for which 
rotation [4] equals plus one. For homotopy it is sufficient to show that 

(I-ttK)o#O for oEC(h’, R,O), r_E[O, 11 (3.6) 

and some h* > 0, R > 0. To prove (3.6). some properties of the functional 

CD (0, r) = ((0 - rWN~~cnj (3.7) 

are examined, where the vector function is a = (2u, 2u, w). 

Lemma 3.2. Let the sequence ok E Ha (Q), which converges weakly to 
6&, E Hs (a), be such that the sequence 

@,, (Ok) - ’ for k--too (34 

Here 

@I1 (0) = \ l(E 1184 f h%) 84 + (&e4 i- E&5) 85 + ‘%342] A%@ f 

h 

+ Ia*2 1 [(bllu + b,,v) u + (b,,u + 42u) u] ds, 2e, = 21~4 [A-b, + 

+ A~v~AB)-~] + ~-2~~2, 2~ b = 2h* [B-lup + Baru(AB)-l] + B-2~~2 

e4=la*[$(~)B+$(~)ol+~’ tL*>o (3.9) 

In this case w,, = 0. It follows from (3.8) and (3.9) that 

r AB [EJ (ok) + Es (ok) da@ - 0, Is+oc 
H 

(3.10) 

2h’ [ [(Bu~)~ + (Avk),J dxdp -1. [ (B.l-‘w;, + AB-‘ru$ dudP 4 0, k -* 00 

h 

(3.11) 

i-2 

By virtue of the theorem on the complete continuity of the imbedding of H,(Q) in 

l@sl) (9) and the fact that the first integral is a continuous linear function in H, (P), we 

can pass to the limit in (3.11) 

2h* [ [(ho), -j- ( Au,,)~J dad!3 + [ ( B.~-‘~L~~, + AB-‘u@ drdP = 0 (3.12) 

h a 

and since 

r 
[(bl,un + b,+*n) uo + (bat/o ~C bzm) PO] ds = 0 (3.13) 

5 
then 

r [(Bu,,)~ 4 (.4/11,)11] da+ = 0 (3.24) 

h 
From (3.12) and (3.14) results 1~’ 0 % 0, hence, from (3.8) and the Sobolev theorem on 
the complete continuity of the imbedding of HI (9) into Wg’) (Q) it follows that 
OL* 3 0 ar k -+ co in the space H2 (V), which proves the lemma completely. 

Lemma 3.3. For some fixed h* and for sufficiently large R the inequality 

d) (0, 2) > SW, oEC(h*, R,O) (3.15) 
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holds on the ellipsoid C (h*, R, 0) where o > 0 is some constant, 

The proof is separated into three parts. 
1. The set T (1,0) 

T (1, 0) = (0 : II 0 II&(Q) = 1, II 0’ II&(Q) 2 w 

is considered on the unit sphere S (i,O). The functional CD (0, t) has the following struc- 

ture on the ellipsoid C (h*, R, 0): 
4 

4, (w, 1) = 2 ND, (01, t) 

fi=l 

where w1 is the prototype of w on the unit sphere. Here Qk (0, t) are some “homogene- 

ous” functionals of degree k = 1,2,3,4. It is seen that all the functionals Qk (01, t) 

are bounded on the unit sphere I( 01 jlH, caj = 1 for all t E [O,i] 

(@I,(ol, t)I<“b<w’ k=l, 2, 3,4 

where ck > 0 are certain constants independent of just the shell parameters and the 
external load. 

The functional @4(o, t) is considered on the set T (i,O) : 

a4 (0, q = 2h*z II a* II&*(*) + a* (E11 w,‘A-” 4 &$qF) [ A-‘u, + Ap (Al?)-‘] + 

A 
+ (Eal~,~A-2 + E%,w~~B-~ [B-~zI~ + ~,u (/q-l1 + G1 ?f$ B IO + p + 

ABdadfj + -;- t 
.r[ 

(EIw,~A-’ + ElzwpaB-a) w,zA” + 

n 

+ (E~p1,2A-2 + E. ~~w,jB-‘) wp’B-2 + 4C, 
w,ky 

A’F 1 ABdadP (3.26) 

It us seen that 
Q,( (0, f) 2 h’” - th’C3, 0 E T (1, 0) (3.17) 

where cs is a constant bounding the first integral in (3.16) on the unit sphere. The se- 

cond integral is always nonnegative. bet the constant h* > U be fixed by the equality 

!L*z - /z*c, = 1 (3.18) 
Then the inequality 

0 (0, t) > H’- E B,Kk - s‘zR3 (3.19) 

k=l 

Is valid in the set C, (h*. R, 0), which is the image of 7’ (1,O). 

2. The functional 4, (0. t) can be reduced to the form 

’ Q&J, ~~=ll~ll~,(,,--2(~--t)II~‘ll2,,(,,t~~ ! 
( 7’lel + Tzea + 5’~) .4 Bdzdfi -- 

ir 
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where c4 is a constant dependent on the constants nll, )>I,~, m3. The set 

- 2h' 

is considered on the part of the unit sphere S, (1,O) -= S (1,0) \ 2’ (1,0) , 
The inequality 

@ (0, t) > 4-lR2 - cj R (3.23) 

is satisfied on the projection of S, (i,O) onto C (h*, R, 0). 

3. The functional $I (w, t) is considered on the image of the set S,(l,U)=S(l,O)\ 
(T (1,O) U S, (i,O)}. Sequences (ok, tk} such that 0 < tk < 1 and ok converges weakly 

to zero, cannot exist in the set S, (1,O) . Indeed, two inequalities are satisfied in SZ (1. 0): 

an inequality reverse to the inequality (3.22) and 

\I w I~,@~ 3 3’a 
(3.24) 

It follows from the first inequality and the Sobolev-Kondrashev theorem on complete 

continuity of the imbedding operator that 

\\ wn Ij&,@, G 4-’ + ‘n 

where r,, + x as II -+ -w, which contradicts (3.27). 
In the set Ss (i,O) the form is @4i (0) > X > 0, where I is some constant. Otherwise, 

a sequence {wk}E& (1,O) , weakly convergent to o0 exists such that 

@~(0&-+0 for k-a, 

It follows from Lemma 3.2 that o, = 0, but this contradicts the first assertion in Sect. 

3, Therefore, the estimate 

@((o, t)),3/1R2+t(hR’--6sR3--5Ra--lR) (3.25) 

is valid on the image of the set S, (I,O) in C (h*, R, 0). 

The assertion of Lemma 3.3 follows from the inequalities (3.19). (3.23). (3.25). 
Lemma 3.4 results directly from Lemmas 3.1, 3.3. 

Lemma 3.4. The rotation of a completely continuous vector field 1-K equals 

plus one on the ellipsoid C (h*, R, 0) for all sufficiently large R and h* fi:ced by 

(3.18). 
Theorem . Let Conditions (1) - (6) of Sect. 2 and (3.1) be satisfied. In this case 

there exists a generalized solution of the shell equilibrium problem in the sense of the 
Definition 3.1, where all possible solutions of the problem are found within some sphere 
of finite radius of the space III, (a) . 

The theorem follows from the Lemma 3.4 and the Schauder-Leray principle on the 
fixed point of an operator. 

Note. Modifying the proof insignificantly, we obtain a theorem on the existense of 
a solution of the shell equilibrium problem with the following boundary conditions . 
Conditions (1.3), (1.4) are retained, and conditions (1.2) are replaced by the following, 
respectively : 

w 17, = 0, M, lYn = ml* cos (a, n) -+ M,” cos (B, 71) - k (s) -jf- 
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where k (s) > k, > 0 is a piecewise-continuous function, k, is some constant, and 

Ha/, (y) is a Sobolev-Slobodetskii space. 
Note 2. Using the explicit form of the operator K we can obtain sufficient con- 

ditions for the uniqueness of the solution, can study the differential properties of the 

solutions, and can also give a foundation for the Bubnov-Galerkin method. 
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ASYMPTOTIC METHOD OF DETERMINING THE CRITICAL BUCKLING LOADS 

OF SHALLOW STRICTLY CONVEX SHELIS OF REVOLUTION 

PMM Vol. 36, No4, 1972, pp. 705-716 
L. S. SRUBSHCHIK 

(Rostov-on-Don) 
(Received April 12, 1972) 

An asymptotic method using the presence of a natural small parameter (the 

relative wall-thinness) is applied to determine the state of stress and strain of 
shallow strictly convex shells of revolution subjected to an axisymmetric load. 
In particular, asymptotic values of the upper and lower critical shell buckling 
loads are deduced under diverse boundary conditions and loading methods. An 
example of a spherical shell under uniform external pressure is examined. In 
the case of rigid clamping of the edge, the known result is obtained in [l] for 
the upper critical pressure. The values found for the upper critical pressures 

of spherical shells are in good agreement with the results of numerical com- 
putations on an electronic computer @ - 133, and permit their continuation 
into the domain of arbitrarily thin shells where the machine computation is 
of low efficiency. 

1. On the formulation of the problem, A system of nonlinear differen- 

tial equations of axisymmetric deformation of shallow shells of revolution is considered 

Cl41 


